

OCR Computer Science AS Level

2.3.1 Sorting Algorithms
Concise Notes

www.pmt.education

Specification:

● Standard algorithms
○ Bubble sort
○ Insertion sort

www.pmt.education

Sorting Algorithms

● Take a number of elements in any order and output them in a logical order
● This is usually numerical or lexicographic (phonebook style ordering)
● Most output elements in ascending order, but can typically be slightly altered or

their output reversed in order to produce an output in descending order

Bubble Sort

● Makes comparisons and swaps between pairs of elements
● The largest element in the unsorted part of the input is said to “bubble” to the top of

the data with each iteration of the algorithm
○ Starts at the first element in an array and compares it to the second
○ If they are in the wrong order, the algorithm swaps the pair
○ The process is then repeated for every adjacent pair of elements in the array,

until the end of the array is reached
● This is one pass of the algorithm
● For an array with n elements, the algorithm will perform n passes through the data
● After n passes, the input is sorted and can be returned

A = Array of data

for i = 0 to A.length - 1:

for j = 0 to A.length - 2:
if A[j] > A[j+1]:

swap A[j] and A[j+1]
return A

● Can be modified to improve efficiency
● A flag recording whether a swap has occurred is introduced
● If a full pass is made without any swaps, then the algorithm terminates
● With each pass, one fewer element needs comparing as the n largest elements are

in position after the nth pass
● Bubble sort is a fairly slow sorting algorithm, with a time complexity of O(n2)

www.pmt.education

Insertion Sort
● Places elements into a sorted sequence
● In the ith iteration of the algorithm the first i elements of the array are sorted

○ Warning: although the i elements are sorted, they are not the i smallest
elements in the input!

● Stars at the second element in the input, and compares it to the element to its left
● When compared, elements are inserted into the correct position in the sorted

portion of the input to their left
● This continues until the last element is inserted into the correct position, resulting in

a fully sorted array
● Has the same time complexity as bubble sort, O(n2)

A = Array of data

for i = 1 to A.length - 1:
elem = A[i]
j = i - 1
while j > 0 and A[j] > elem:

A[j+1] = A[j]
j = j - 1

A[j+1] = elem

www.pmt.education

